| [Akasaka, 2009] |
H. Akasaka, H. Yukutake, Y. Nagata, T. Funabiki, T. Mizutani, H. Takagi, Y. Fukushima, L.R. Juneja, H. Nanbu, K. Kitahata, Selective adsorption of biladien-ab-one and zinc biladien-ab-one to mesoporous silica, Micropor. Mesopor. Mat. 120 (2009) 331–338. https://doi.org/10.1016/j.micromeso.2008.11.025 |
| [Allik, 1994] |
T.H. Allik, R.E. Hermes, G. Sathyamoorthi, J.H. Boyer, Spectroscopy and laser performance of new BF2-complex dyes in solution, Proc. SPIE 2115 (1994) 240–248. https://doi.org/10.1117/12.172742 |
| [Antina, 2009] |
E.V. Antina, G.B. Guseva, N.A. Dudina, A.I. V'yugin, A.S. Semeikin, Synthesis and spectral analysis of alkyl-substituted 3,3′-bis(dipyrrolylmethenes), Russ. J. Gen. Chem. 79 (2009) 2425–2434. https://doi.org/10.1134/S1070363209110243 |
| [Antina, 2022] |
L.A. Antina, A.A. Kalyagin, A.A. Ksenofontov, R.S. Pavelyev, O.A. Lodochnikova, D.R. Islamov, M.B. Berezin, E.V. Antina, Effects of ms-aryl substitution on the structure and spectral properties of new CH(Ar)-bis(BODIPY) luminophores, Spectrochim. Acta A Mol. Biomol. 265 (2022) 120393. https://doi.org/10.1016/j.saa.2021.120393 |
| [Balch, 1993] |
A.L. Balch, L. Latos-Grazynski, B.C. Noll, M.M. Olmstead, N. Safari, Isolation and characterization of an iron biliverdin-type complex that is formed along with verdohemochrome during the coupled oxidation of iron(II) octaethylporphyrin, J. Am. Chem. Soc. 115 (1993) 9056–9061. https://doi.org/10.1021/ja00073a022 |
| [Balch, 1994] |
A.L. Balch, M. Mazzanti, B.C. Noll, M.M. Olmstead, Coordination patterns for biliverdin-type ligands. Helical and linked helical units in four-coordinate cobalt and five-coordinate manganese(III) complexes of octaethylbilindione, J. Am. Chem. Soc. 116 (1994) 9114–9122. https://doi.org/10.1021/ja00099a029 |
| [Baudron, 2015] |
S.A. Baudron, H. Ruffin, M.W. Hosseini, On Zn(II) 2,2′-bisdipyrrin circular helicates, Chem. Commun. 51 (2015) 5906–5909. https://doi.org/10.1039/C5CC00724K |
| [Bishop, 1991] |
J.E. Bishop, J.O. Nagy, J.F. O'Connell, H. Rapoport, Diastereoselective synthesis of phycocyanobilin-cysteine adducts, J. Am. Chem. Soc. 113 (1991) 8024–8035. https://doi.org/10.1021/ja00021a032 |
| [Boiadjiev, 2001] |
S.E. Boiadjiev, D.A. Lightner, A water-soluble synthetic bilirubin with carboxyl groups replaced by sulfonyl moieties, Monatsh. Chem. 132 (2001) 1201–1212. https://doi.org/10.1007/s007060170035 |
| [Boiadjiev, 2004] |
S.E. Boiadjiev, D.A. Lightner, Conformational control by remote stereogenic centers: linear tetrapyrroles, Tetrahedron Asymm. 15 (2004) 3301–3305. https://doi.org/10.1016/j.tetasy.2004.08.029 |
| [Boiadjiev, 2005] |
S.E. Boiadjiev, D.A. Lightner, N21,N22-Carbonyl-bridged biliverdin. Red-blue color change effected by conformation, J. Heterocycl. Chem. 42 (2005) 161–164. https://doi.org/10.1002/jhet.5570420126 |
| [Bonfiglio, 1982] |
J.V. Bonfiglio, R. Bonnett, D.G. Buckley, D. Hamzetash, M.B. Hursthouse, K.M.A. Malik, S.C. Naithani, J. Trotter, The meso-reactivity of porphyrins and related compounds. Part VIII. Substitution and addition reactions of octaethyl-21H,24H-bilin-1,19-dione, a model verdin system. X-Ray analyses of octaethyl-5-nitro-21H,24H-bilin-1,19-dione and of 4,5-diethoxy-octaethyl-4,5-dihydro-21H,24H-bilin-1,19-dione, J. Chem. Soc., Perkin Trans. 1 (1982) 1291–1302. https://doi.org/10.1039/p19820001291 |
| [Bonfiglio, 1983] |
J.V. Bonfiglio, R. Bonnett, D.G. Buckley, D. Hamzetash, M.B. Hursthouse, K.M.A. Malik, A.F. McDonagh, J. Trotter, Linear tetrapyrroles as ligands: Syntheses and X-ray analyses of boron and nickel complexes of octaethyl-21H,24H-bilin-1,19-dione, Tetrahedron. 39 (1983) 1865–1874. https://doi.org/10.1016/S0040-4020(01)88700-7 |
| [Braslavsky, 1991] |
S.E. Braslavsky, D. Schneider, K. Heihoff, S. Nonell, P.F. Aramendia, K. Schaffner, Phytochrome models. 11. Photophysics and photochemistry of phycocyanobilin dimethyl ester, J. Am. Chem. Soc. 113 (1991) 7322–7334. https://doi.org/10.1021/ja00019a033 |
| [Bröring, 2007] |
M. Bröring, S. Link, C.D. Brandt, E.C. Tejero, Helical transition‐metal complexes of constrained 2,2′‐bidipyrrins, Eur. J. Inorg. Chem. 2007 (2007) 1661–1670. https://doi.org/10.1002/ejic.200600986 |
| [Bröring, 2008] |
M. Bröring, S. Köhler, S. Link, O. Burghaus, C. Pietzonka, H. Kelm, H.-J. Krüger, Iron chelates of 2,2′-bidipyrrin: Stable analogues of the labile iron bilins, Chem. Eur. J. 14 (2008) 4006–4016. https://doi.org/10.1002/chem.200701919 |
| [Brower, 2001] |
J.O. Brower, D.A. Lightner, A.F. McDonagh, Aromatic congeners of bilirubin: Synthesis, stereochemistry, glucuronidation and hepatic transport, Tetrahedron 57 (2001) 7813–7827. https://doi.org/10.1016/S0040-4020(01)00773-6 |
| [Brown, 1981] |
S.B. Brown, J.A. Holroyd, R.F. Troxler, G.D. Offner, Bile pigment synthesis in plants. Incorporation of haem into phycocyanobilin and phycobiliproteins in Cyanidium caldarium, Biochem. J. 194 (1981) 137–147. https://doi.org/10.1042/bj1940137 |
| [Carra, 1964] |
P.Ó. Carra, C.Ó. hEocha, D.M. Carroll, Spectral properties of the phycobilins. II. Phycoerythrobilin, Biochemistry 3 (1964) 1343–1350. https://doi.org/10.1021/bi00897a026 |
| [Chen, 1995a] |
Q.-Q. Chen, H. Falk, On the chemistry of pyrrole pigments, XCIII: 1,2-bis-(dipyrrinon-9-ylidene)-ethane – a novel b-homoverdin chromophore, Monatsh. Chem. 126 (1995) 1097–1107. https://doi.org/10.1007/BF00811380 |
| [Chen, 1995b] |
Q.Q. Chen, H. Falk, On the chemistry of pyrrole pigments, XCIV: 1-(Dipyrrinon-9-yl)-3-(dipyrrinon-9-ylidene)-1-propene – a novel b-vinylogous verdin chromophore, Monatsh. Chem. 126 (1995) 1233–1244. https://doi.org/10.1007/BF00824302 |
| [Chen, 1995c] |
Q.-Q. Chen, H. Falk, On the chemistry of pyrrole pigments, XCV: 1,4-bis-(dipyrrinone-9-ylidene)-butene-2 – A novel b-homo-verdin chromophore, Monatsh. Chem. 126 (1995) 1323–1329. https://doi.org/10.1007/BF00807061 |
| [Chen, 1999] |
Q. Chen, M.T. Huggins, D.A. Lightner, W. Norona, A.F. McDonagh, Synthesis of a 10-oxo-bilirubin: Effects of the oxo group on conformation, transhepatic transport, and glucuronidation, J. Am. Chem. Soc. 121 (1999) 9253–9264. https://doi.org/10.1021/ja991814m |
| [Cheng, 1990] |
L.-J. Cheng, J.-S. Ma, L.-C.C. (Li-J. Jiang), The complexes formed by biladiene a, b compounds with zinc ions and their application in determination of the chromophore composition of α- and β- subunits of R-phycoerythrin, Photochem. Photobiol. 52 (1990) 1071–1076. https://doi.org/10.1111/j.1751-1097.1990.tb08447.x |
| [Chung, 2021] |
D.T.M. Chung, P.V. Tran, K. Chau Nguyen, P. Wang, J.S. Lindsey, Synthesis of model bacteriochlorophylls containing substituents of native rings A, C and E, New J. Chem. 45 (2021) 13302–13316. https://doi.org/10.1039/D1NJ02469H. |
| [Crusats, 1998] |
J. Crusats, A. Delgado, J.-A. Farrera, R. Rubires, J.M. Ribó, Solution structure of mesobilirubin XIIIα bridged between the propionic acid substituents, Monatsh. Chem. 129 (1998) 741–753. https://doi.org/10.1007/PL00013483 |
| [Dolphin, 1966] |
D. Dolphin, A.W. Johnson, J. Leng, P. van den Broek, The base-catalysed cyclisations of 1,19-dideoxybiladienes-ac, J. Chem. Soc., C (1966) 880–884. https://doi.org/10.1039/j39660000880 |
| [Dudina, 2015] |
N.A. Dudina, E.V. Antina, D.I. Sozonov, A.I. V'yugin, Effect of alkyl substitution in 3,3′-bis(dipyrrin) on chemosensor activity of fluorescent detection of Zn2+ cations, Russ. J. Org. Chem. 51 (2015) 1155–1161. https://doi.org/10.1134/S107042801508014X |
| [Edinger, 1984a] |
J. Edinger, H. Falk, N. Müller, Zur chemie der pyrrolpigmente, 54. mitt.: Phytochrommodellstudien: Ein 2,3-dihydrobilatrien-abc-3-cholesterylderivat, Monatsh. Chem. 115 (1984) 837–852. https://doi.org/10.1007/BF01120979 |
| [Edinger, 1984b] |
J. Edinger, H. Falk, W. Jungwirth, N. Müller, U. Zrunek, Zur chemie der pyrrolpigmente, 56. mitt.: Phytochrommodellstudien: Die induzierten und natürlichen chiroptischen eigenschaften von bilatrienen-abc und 2,3-dihydrobilatrienen-abc, Monatsh. Chem. 115 (1984) 1081–1099. https://doi.org/10.1007/BF00798775 |
| [Eivazi, 1977] |
F. Eivazi, M.F. Hudson, K.M. Smith, Bile pigment studies III. Controlled oxidative degradation of 1,19(21,24)-bilindiones (bilitrienes), Tetrahedron 33 (1977) 2959–2964. https://doi.org/10.1016/0040-4020(77)88030-7 |
| [Falk, 1978] |
H. Falk, K. Grubmayr, E. Haslinger, T. Schlederer, K. Thirring, Beiträge zur chemie der pyrrolpigmente, 25. mitt.: Die diastereomeren (geometrisch isomeren) biliverdindimethylester – Struktur, konfiguration und konformation, Monatsh. Chem. 109 (1978) 1451–1473. https://doi.org/10.1007/BF00906057 |
| [Falk, 1979a] |
H. Falk, K. Thirring, Beiträge zur Chemie der pyrrolpigmente, XXXIII. Darstellung, struktur und eigenschaften von isomeren N-methyl-bilatrienen-abc (N-methyl-etiobiliverdine-IV-γ), Z. Naturforsch. B 34 (1979) 1448–1453. https://doi.org/10.1515/znb-1979-1020 |
| [Falk, 1979b] |
H. Falk, T. Schlederer, Beiträge zur Chemie der Pyrrolpigmente, XXX. Struktur und eigenschaften der laktimform eines bilatriens-abc (ätiobiliverdin-IV-γ), Liebigs Ann. Chem. 1979 (1979) 1560–1570. https://doi.org/10.1002/jlac.197919791015 |
| [Falk, 1979c] |
H. Falk, K. Thirring, Beiträge zur chemie der pyrrolpigmente, XXXIV. Über die konfiguration und konformation von diastereomeren N-methyl-O-methyl-bilatrienen-abc, Z. Naturforsch. B 34 (1979) 1600–1605. https://doi.org/10.1515/znb-1979-1123 |
| [Falk, 1980a] |
H. Falk, N. Müller, T. Schlederer, Beiträge zur chemie der pyrrolpigmente, 35. mitt.: Eine regioselektive, reversible addition an bilatriene-abc, Monatsh. Chem. 111 (1980) 159–175. https://doi.org/10.1007/BF00938725 |
| [Falk, 1980b] |
H. Falk, K. Thirring, Beiträge zur chemie der pyrrolpigmente, XXXVI. Zur anaeroben photochemie von 21.24-dimethy-aetiobiIiverdin-IV-γ, Z. Naturforsch. B 35 (1980) 376–380. https://doi.org/10.1515/znb-1980-0322 |
| [Falk, 1981a] |
H. Falk, T. Schlederer, P. Wolschann, Beiträge zur chemie der pyrrolpigmente, 38. mitt.: Zur assoziation von gallenpigmenten, Monatsh. Chem. 112 (1981) 199–207. https://doi.org/10.1007/BF00911086 |
| [Falk, 1981b] |
H. Falk, K. Thirring, Beiträge zur chemie der pyrrolpigmente-XXXVII: Überbrückte gallenpiqmente: N21-N24-methylen-aetiobiliverdin- IV-γ und N21-N24-methylen-aetiobilirubin-IV-γ, Tetrahedron 37 (1981) 761–766. https://doi.org/10.1016/S0040-4020(01)97694-X |
| [Falk, 1983] |
H. Falk, U. Zrunek, Beiträge zur chemie der pyrrolpigmente, 50. mitt.: Phytochrommodellstudien: Das laktam – Laktimgleichgewicht des pyrrolidinonfragmentes von 2,3-dihydrobilatrienen-abc – Protonierungsgleichgewichte, Monatsh. Chem. 114 (1983) 983–998. https://doi.org/10.1007/BF00799958 |
| [Falk, 1984a] |
H. Falk, U. Zrunek, Beiträge zur chemie der pyrrolpigmente, 52. mitt.: Phytochrommodellstudien: Eine reversible addition an Δ-4 von 2,3-dihydrobilatrienen-abc, Monatsh. Chem. 115 (1984) 101–111. https://doi.org/10.1007/BF00798426 |
| [Falk, 1984b] |
H. Falk, P. Wolschann, U. Zrunek, Beiträge zur chemie der pyrrolpigmente, 53. mitt.: Phytochrommodellstudien: Das säure-basen-gleichgewicht diastereomerer 2,3-dihydrobilatriene-abc, Monatsh. Chem. 115 (1984) 243–249. https://doi.org/10.1007/BF00798415 |
| [Falk, 1985a] |
H. Falk, H. Gsaller, E. Hubauer, N. Müller, Beiträge zur chemie der pyrrolpigmente, 61. mitt.: Phytochrommodellstudien – Absorptionsspektren und strukturelle aspekte von 2,3-dihydrobilatrienen-abc aus der sicht eines semiempirischen quantenchemischen verfahrens (PPP-SCF-LCAO-MO-CI), Monatsh. Chem. 116 (1985) 939–959. https://doi.org/10.1007/BF00809188 |
| [Falk, 1985b] |
H. Falk, N. Müller, S. Wansch, Zur chemie der pyrrolpigmente, 63. mitt.: Phytochrommodellstudien: Das system 2,3-dihydrobilatrien – Hexamethylphosphorsäuretriamid als modell für gestreckte chromophore, Monatsh. Chem. 116 (1985) 1087–1097. https://doi.org/10.1007/BF00809199 |
| [Falk, 1985c] |
H. Falk, H. Flödl, Beiträge zur chemie der pyrrolpigmente, 64. mitt.: 2,3,7,8,12,13,17,18,22,23-Decamethyl-1,24,25,29-tetrahydro-27H-pentapyrrin-1,24-dion, der erste vertreter linearer pentapyrrole: Darstellung und struktur im gelösten zustand, Monatsh. Chem. 116 (1985) 1177–1187. https://doi.org/10.1007/BF00811251 |
| [Falk, 1986a] |
H. Falk, H. Flödl, Beiträge zur chemie der pyrrolpigmente, 65. mitt.: 2,3,7,8,12,13,17,18,22,23-Decamethyl-1,24,25,29-tetrahydro-27H-pentapyrrin-1,24-dion, der erste vertreter linearer pentapyrrole: Eigenschaften und reaktionsweisen, Monatsh. Chem. 117 (1986) 57–67. https://doi.org/10.1007/BF00809173 |
| [Falk, 1986b] |
H. Falk, A. Hinterberger, Beiträge zur chemie der pyrrolpigmente, 67. mitt.: Bilatriene-abc und 2,3-dihydrobilatriene-abc in micellaren systemen, Monatsh. Chem. 117 (1986) 1081–1090. https://doi.org/10.1007/BF00811278 |
| [Falk, 1988a] |
H. Falk, W. Medinger, N. Müller, Beiträge zur chemie der pyrrolpigmente, 75. mitt. Phytochrom-modell-studien: Stereochemische untersuchungen an einem zwischen den pyrrolischen ringen A und C peptidartig überbrückten 2,3-dihydrobilatrien-abc, Monatsh. Chem. 119 (1988) 113–126. https://doi.org/10.1007/BF00810093 |
| [Falk, 1988b] |
H. Falk, H. Flödl, U.G. Wagner, Beiträge zur chemie der pyrrolpigmente, 77. mitt. Synthese und struktur von b-Nor-bilatrienen-abc und b-Nor-biladienen-ac bzw. Bi-9,9′-dipyrrinonylidenen und bi-9,9′-dipyrrinonylenen, Monatsh. Chem. 119 (1988) 739–749. https://doi.org/10.1007/BF00809688 |
| [Falk, 1989a] |
H. Falk, N. Müller, H. Wöss, Beiträge zur chemie der pyrrolpigmente, 79. mitt.: Zum strukturellen einfluß stark raumerfüllender reste bei 10-substituierten 1,19-bilindionen, Monatsh. Chem. 120 (1989) 35–43. https://doi.org/10.1007/BF00809647 |
| [Falk, 1989b] |
H. Falk, K. Grubmayr, M. Marko, Beiträge zur chemie der pyrrolpigmente, 82. mitt.: Wasserlösliche polymere mit kovalent gebundenen violinoiden und 2,3-dihydro-verdinoiden gallenfarbstoffen, Monatsh. Chem. 120 (1989) 771–779. https://doi.org/10.1007/BF00809971 |
| [Falk, 1990] |
H. Falk, H. Wöss, Beiträge zur chemie der pyrrolpigmente, 83. mitt.: Zum einfluß geladener zentren auf die absorptionsspektren von 1,19-bilindionen, Monatsh. Chem. 121 (1990) 59–66. https://doi.org/10.1007/BF00810295 |
| [Falk, 1992] |
H. Falk, M. Frühwirth, On the chemistry of pyrrole pigments, LXXXIX: Vinylogous linear di- and tetrapyrroles, Monatsh. Chem. 123 (1992) 1213–1221. https://doi.org/10.1007/BF00808284 |
| [Falk, 1993] |
H. Falk, A. Šuste, On the chemistry of pyrrole pigments, XC: Pyridinologous linear tri- and tetrapyrroles, Monatsh. Chem. 124 (1993) 881–891. https://doi.org/10.1007/BF00816411 |
| [Fuhrhop, 1974] |
J.-H. Fuhrhop, PeterK.W. Wasser, J. Subramanian, U. Schrader, Formylbiliverdine und ihre Metallkomplexe, Liebigs Ann. Chem. 1974 (1974) 1450–1466. https://doi.org/10.1002/jlac.197419740909 |
| [Fuhrhop, 1975] |
J.-H. Fuhrhop, A. Salek, J. Subramanian, C. Mengersen, S. Besecke, Metallkomplexe von biliverdinderivaten, Liebigs Ann. Chem. 1975 (1975) 1131–1147. https://doi.org/10.1002/jlac.197519750612 |
| [Ghidinelli, 2018] |
S. Ghidinelli, S. Abbate, S.E. Boiadjiev, D.A. Lightner, G. Longhi, l -Stercobilin-HCl and d-urobilin-HCl. analysis of their chiroptical and conformational properties by VCD, ECD, and CPL experiments and MD and DFT calculations, J. Phys. Chem. B 122 (2018) 12351–12362. https://doi.org/10.1021/acs.jpcb.8b07954 |
| [Ghosh, 2004] |
B. Ghosh, D.A. Lightner, A.F. McDonagh, Synthesis, conformation, and metabolism of a selenium bilirubin, Monatsh. Chem. 135 (2004) 1189–1199. https://doi.org/10.1007/s00706-004-0191-9 |
| [Gossauer, 1974] |
A. Gossauer, W. Hirsch, Synthesen von Gallenfarbstoffen, IV. Totalsynthese des racemischen phycocyanobilins (phycobiliverdins) sowie eines “homophycobiliverdins,” Liebigs Ann. Chem. 1974 (1974) 1496–1513. https://doi.org/10.1002/jlac.197419740913 |
| [Guseva, 2008] |
G.B. Guseva, N.A. Dudina, E.V. Antina, A.I. V'yugin, A.S. Semeikin, 3,3′-bis(dipyrrolylmethenes) as new chelating ligands: Synthesis and spectral properties, Russ. J. Gen. Chem. 78 (2008) 1215–1224. https://doi.org/10.1134/S1070363208060200 |
| [Guseva, 2019] |
Galina.B. Guseva, E.V. Antina, A.A. Ksenofontov, The complex formation of indium(III) acetate with alkyl-substituted 3,3′-bis(dipyrromethene) ligands, Inorg. Chim. Acta 498 (2019) 119146. https://doi.org/10.1016/j.ica.2019.119146 |
| [Huster, 1988] |
M.S. Huster, K.M. Smith, Ring cleavage of chlorophyll derivatives: Isolation of oxochlorin intermediates and ring opening via a two oxygen molecule mechanism, Tetrahedron Lett. 29 (1988) 5707–5710. https://doi.org/10.1016/S0040-4039(00)82168-1 |
| [Ituttaspe, 1993] |
J. Ituttaspe, N. Engel, P. Matzinger, V. Mooser, A. Gossauer, Chlorophyll catabolism. Part 3. Structure elucidation and partial synthesis of a new red bilin derivative from Chlorella protothecoides, Photochem. Photobiol. 58 (1993) 116–119. https://doi.org/10.1111/j.1751-1097.1993.tb04911.x |
| [Johnson, 1999] |
J.A. Johnson, M.M. Olmstead, A.L. Balch, Reactivity of the verdoheme analogues. Opening of the planar macrocycle by amide and thiolate nucleophiles to form helical complexes, Inorg. Chem. 38 (1999) 5379–5383. https://doi.org/10.1021/ic9904283 |
| [Johnson, 2001] |
J.A. Johnson, M.M. Olmstead, A.M. Stolzenberg, A.L. Balch, Ring-opening and meso substitution from the reaction of cyanide ion with zinc verdohemes, Inorg. Chem. 40 (2001) 5585–5595. https://doi.org/10.1021/ic0103300 |
| [Kakeya, 2014] |
K. Kakeya, M. Aozasa, T. Mizutani, Y. Hitomi, M. Kodera, Nucleophilic ring opening of meso-substituted 5-oxaporphyrin by oxygen, nitrogen, sulfur, and carbon nucleophiles, J. Org. Chem. 79 (2014) 2591–2600. https://doi.org/10.1021/jo5000412 |
| [Koerner, 1998] |
R. Koerner, M.M. Olmstead, A. Ozarowski, S.L. Phillips, P.M. Van Calcar, K. Winkler, A.L. Balch, Possible intermediates in biological metalloporphyrin oxidative degradation. Nickel, copper, and cobalt complexes of octaethylformybiliverdin and their conversion to a verdoheme, J. Am. Chem. Soc. 120 (1998) 1274–1284. https://doi.org/10.1021/ja973088y |
| [Kuenzle, 1970] |
C.C. Kuenzle, Bilirubin conjugates of human bile. Nuclear-magnetic-resonance, infrared and optical spectra of model compounds, Biochem. J. 119 (1970) 395–409. https://doi.org/10.1042/bj1190395 |
| [Kufer, 1983] |
W. Kufer, H. Scheer, A.R. Holzwarth, Isophorcarubin – A conformationally restricted and highly fluorescent bilirubin, Isr. J. Chem. 23 (1983) 233–240. https://doi.org/10.1002/ijch.198300033 |
| [Latos-Grażyński, 1998] |
L. Latos-Grażyński, J. Johnson, S. Attar, M.M. Olmstead, A.L. Balch, Reactivity of the verdoheme analogues, 5-oxaporphyrin complexes of cobalt(II) and zinc(II), with nucleophiles: Opening of the planar macrocycle by alkoxide addition to form helical complexes, Inorg. Chem. 37 (1998) 4493–4499. https://doi.org/10.1021/ic971584h |
| [Leumann, 1984] |
C. Leumann, A. Eschenmoser, Chemistry of pyrrocorphins: Methylative opening of the macrocycle between rings A and D, a side reaction in the peripheral C-methylation of a 20-methyl-pyrrocorphinate, J. Chem. Soc., Chem. Commun. (1984) 583–585. https://doi.org/10.1039/c39840000583 |
| [Lord, 2000] |
P.A. Lord, M.M. Olmstead, A.L. Balch, Redox characteristics of nickel and palladium complexes of the open-chain tetrapyrrole octaethylbilindione: A biliverdin model, Inorg. Chem. 39 (2000) 1128–1134. https://doi.org/10.1021/ic9910209 |
| [Lord, 2001] |
P.A. Lord, B.C. Noll, M.M. Olmstead, A.L. Balch, A remarkable skeletal rearrangement of a coordinated tetrapyrrole: Chemical consequences of palladium π-coordination to a bilindione, J. Am. Chem. Soc. 123 (2001) 10554–10559. https://doi.org/10.1021/ja010647z |
| [McDonagh, 1982] |
A.F. McDonagh, L.A. Palma, D.A. Lightner, Phototherapy for neonatal jaundice. Stereospecific and regioselective photoisomerization of bilirubin bound to human serum albumin and NMR characterization of intramolecularly cyclized photoproducts, J. Am. Chem. Soc. 104 (1982) 6867–6869. https://doi.org/10.1021/ja00388a104 |
| [McDonagh, 1986] |
A.F. McDonagh, D.A. Lightner, M. Reisinger, L.A. Palma, Human serum albumin as a chiral template. Stereoselective photocyclization of bilirubin, J. Chem. Soc., Chem. Commun. (1986) 249-250. https://doi.org/10.1039/c39860000249 |
| [McDonagh, 2007] |
A.F. McDonagh, D.A. Lightner, Influence of conformation and intramolecular hydrogen bonding on the acyl glucuronidation and biliary excretion of acetylenic bis-dipyrrinones related to bilirubin, J. Med. Chem. 50 (2007) 480–488. https://doi.org/10.1021/jm0609521 |
| [Mizutani, 1998] |
T. Mizutani, S. Yagi, A. Honmaru, S. Murakami, M. Furusyo, T. Takagishi, H. Ogoshi, Helical chirality induction in zinc bilindiones by amino acid esters and amines, J. Org. Chem. 63 (1998) 8769–8784. https://doi.org/10.1021/jo980819j |
| [Mizutani, 2016] |
T. Mizutani, Coupled oxidation of iron tetraarylporphyrins as a synthetic tool for linear tetrapyrroles, J. Porphyrins Phthalocyanines 20 (2016) 108–116. https://doi.org/10.1142/S1088424616300044 |
| [Murakami, 1969] |
Y. Murakami, Y. Kohno, Y. Matsuda, Transition-metal complexes of pyrrole pigments, II. Cobalt(II) and nickel(II) complexes of 1,19-dideoxy- 8,12-dicarbethoxy-1,3,7,13,17,17-hexamethylbiladiene-ac, Inorg. Chim. Acta 3 (1969) 671–675. https://doi.org/10.1016/S0020-1693(00)92575-1 |
| [Murakami, 1971] |
Y. Murakami, Y. Matsuda, Y. Kanaoka, Transition-metal complexes of pyrrole pigments. III. Copper(II) and zinc(II) complexes of 1,19-dideoxy-8,12-dicarbethoxy-1,3,7,13,17,19-hexamethylbiladiene-ac, Bull. Chem. Soc. Jpn. 44 (1971) 409–415. https://doi.org/10.1246/bcsj.44.409 |
| [Murakami, 1973] |
Y. Murakami, Y. Matsuda, S.-I. Kobayashi, Transition-metal complexes of pyrrole pigments. Part VII. Cobalt(II) and zinc(II) chelates of some tripyrrene-b and bilene-b ligands, J. Chem. Soc., Dalton Trans. (1973) 1734–1737. https://doi.org/10.1039/dt9730001734 |
| [Mwakwari, 2007] |
C. Mwakwari, F.R. Fronczek, K.M. Smith, b-Bilene to a,c-biladiene transformation during syntheses of isoporphyrins and porphyrins, Chem. Commun. (2007) 2258–2260. https://doi.org/10.1039/b705182d |
| [Nakamura, 1988] |
H. Nakamura, B. Musicki, Y. Kishi, O. Shimomura, Structure of the light emitter in krill (Euphausia pacifica) bioluminescence, J. Am. Chem. Soc. 110 (1988) 2683–2685. https://doi.org/10.1021/ja00216a070 |
| [Nakamura, 1989] |
H. Nakamura, Y. Kishi, O. Shimomura, D. Morse, J.W. Hastings, Structure of dinoflagellate luciferin and its enzymic and nonenzymic air-oxidation products, J. Am. Chem. Soc. 111 (1989) 7607–7611. https://doi.org/10.1021/ja00201a050 |
| [Nakamura, 2011] |
R. Nakamura, K. Kakeya, N. Furuta, E. Muta, H. Nishisaka, T. Mizutani, Synthesis of para- or ortho-substituted triarylbilindiones and tetraarylbiladienones by coupled oxidation of tetraarylporphyrins, J. Org. Chem. 76 (2011) 6108–6115. https://doi.org/10.1021/jo2007994 |
| [Nesvadba, 1987] |
P. Nesvadba, A. Gossauer, Synthesis of bile pigments. 14. Synthesis of a bilindionostilbenoparacyclophane as a model for “stretched” bile pigment chromophores of biliproteins, J. Am. Chem. Soc. 109 (1987) 6545–6546. https://doi.org/10.1021/ja00255a069 |
| [Nesvadba, 1994] |
P. Nesvadba, D. Ngoc-Phan, F. Nydegger, A.E. Ferao, A. Gossauer, Syntheses of bile pigments. Part 18. Synthesis and conformational studies of oxa- and thia-deaza-biliverdin analogues, Helv. Chim. Acta 77 (1994) 1837–1850. https://doi.org/10.1002/hlca.19940770715 |
| [Nguyen, 2020] |
K.C. Nguyen, P. Wang, R.D. Sommer, J.S. Lindsey, Asymmetric synthesis of a bacteriochlorophyll model compound containing trans-dialkyl substituents in ring D, J. Org. Chem. 85 (2020) 6605–6619. https://doi.org/10.1021/acs.joc.0c00608 |
| [Nesvadba, 1994] |
P. Nesvadba, D. Ngoc-Phan, F. Nydegger, A.E. Ferao, A. Gossauer, Syntheses of bile pigments. Part 18. Synthesis and conformational studies of oxa- and thia-deaza-biliverdin analogues, Helv. Chim. Acta 77 (1994) 1837–1850. https://doi.org/10.1002/hlca.19940770715 |
| [Ongayi, 2006] |
O. Ongayi, M.G.H. Vicente, Z. Ou, K.M. Kadish, M.R. Kumar, F.R. Fronczek, K.M. Smith, Synthesis and electrochemistry of undeca-substituted metallo-benzoylbiliverdins, Inorg. Chem. 45 (2006) 1463–1470. https://doi.org/10.1021/ic050841c |
| [Paolesse, 2003] |
R. Paolesse, A. Froiio, S. Nardis, M. Mastroianni, M. Russo, D.J. Nurco, K.M. Smith, Novel aspects of the chemistry of 1,19-diunsubstituted a,c-biladienes, J. Porphyrins Phthalocyanines 07 (2003) 585–592. https://doi.org/10.1142/S1088424603000744 |
| [Paolesse, 2008] |
R. Paolesse, A. Alimelli, A. D'Amico, M. Venanzi, G. Battistini, M. Montalti, D. Filippini, I. Lundström, C. Di Natale, Insights on the chemistry of a,c-biladienes from a CSPT investigation, New J. Chem. 32 (2008) 1162–1166. https://doi.org/10.1039/b800512e |
| [Pasquier, 1987] |
C. Pasquier, A. Gossauer, W. Keller, C. Kratky, Syntheses of bile pigments. Part 15. First unequivocal assignment of the absolute configuration of an urobilinoid bile pigment by X-ray diffraction analysis of its synthetic precursor, Helv. Chim. Acta 70 (1987) 2098–2109. https://doi.org/10.1002/hlca.19870700815 |
| [Pfeiffer, 1994] |
W.P. Pfeiffer, D.A. Lightner, Homorubin. A centrally homologated bilirubin, Tetrahedron Lett. 35 (1994) 9673–9676. https://doi.org/10.1016/0040-4039(94)88356-4 |
| [Risch, 1984] |
N. Risch, A. Schormann, H. Brockmann, Photobilin e. Photooxidation von bacteriochlorophyll-e-derivaten, Tetrahedron Lett. 25 (1984) 5993–5996. https://doi.org/10.1016/S0040-4039(01)81741-X |
| [Rumyantsev, 2009] |
E.V. Rumyantsev, S.P. Makarova, E.V. Antina, Protonation and solvation effects in the reaction of zinc 1,2,3,7,8,12,13,17,18,19-decamethylbiladien-a,c complex formation, Russ. J. Gen. Chem. 79 (2009) 2420–2424. https://doi.org/10.1134/S1070363209110231 |
| [Savoldelli, 2017] |
A. Savoldelli, R. Paolesse, F.R. Fronczek, K.M. Smith, M.G.H. Vicente, BODIPY dyads from a,c-biladiene salts, Org. Biomol. Chem. 15 (2017) 7255–7257. https://doi.org/10.1039/C7OB01797A |
| [Shimada, 2022] |
K. Shimada, T. Mizutani, Synthesis and reactivity of 10,15,20-triaryl-5-oxaporphyrin copper complexes, Tetrahedron Lett. 103 (2022) 153977. https://doi.org/10.1016/j.tetlet.2022.153977 |
| [Shimomura, 1995] |
O. Shimomura, The roles of the two highly unstable components F and P involved in the bioluminescence of euphausiid shrimps, J. Biolumin. Chemilumin. 10 (1995) 91–101. https://doi.org/10.1002/bio.1170100205 |
| [Singleton, 1965] |
J.W. Singleton, L. Laster, Biliverdin reductase of guinea pig liver, J. Biol. Chem. 240 (1965) 4780–4789. https://doi.org/10.1016/S0021-9258(18)97023-7 |
| [Smith, 1980] |
K.M. Smith, S.B. Brown, R.F. Troxler, J.-J. Lai, Mechanism of photo-oxygenation of meso-tetraphenylporphyrin metal complexes, Tetrahedron Lett. 21 (1980) 2763–2766. https://doi.org/10.1016/S0040-4039(00)78600-X |
| [Smith, 1986] |
K.M. Smith, O.M. Minnetian, Cyclizations of 1′,8′-dimethyl-a,c-biladiene salts to give porphyrins: A study with various oxidizing agents, J. Chem. Soc., Perkin Trans. 1 (1986) 277–280. https://doi.org/10.1039/P19860000277 |
| [Suresh, 2009] |
M. Suresh, S.K. Mishra, S. Mishra, A. Das, The detection of Hg2+ by cyanobacteria in aqueous media, Chem. Commun. (2009) 2496–2498. https://doi.org/10.1039/b821687h |
| [Taniguchi, 2018] |
M. Taniguchi, J.S. Lindsey, Database of absorption and fluorescence spectra of >300 common compounds for use in PhotochemCAD, Photochem. Photobiol. 94 (2018) 290–327. https://doi.org/10.1111/php.12860 |
| [Terry, 1993] |
M.J. Terry, M.D. Maines, J.C. Lagarias, Inactivation of phytochrome- and phycobiliprotein-chromophore precursors by rat liver biliverdin reductase, J. Biol. Chem. 268 (1993) 26099–26106. https://doi.org/10.1016/S0021-9258(19)74286-0 |
| [Tipton, 2001] |
A.K. Tipton, D.A. Lightner, A.F. McDonagh, Synthesis and metabolism of the first thia-bilirubin, J. Org. Chem. 66 (2001) 1832–1838. https://doi.org/10.1021/jo001598w |
| [Tu, 2003] |
B.B. Tu, D.A. Lightner, A novel diacetylenic bilirubin, J. Heterocycl. Chem. 40 (2003) 707–712. https://doi.org/10.1002/jhet.5570400424 |
| [Wang, 2020] |
P. Wang, F. Lu, J.S. Lindsey, Use of the nascent isocyclic ring to anchor assembly of the full skeleton of model chlorophylls, J. Org. Chem. 85 (2020) 702–715. https://doi.org/10.1021/acs.joc.9b02770 |
| [Weller, 1980] |
J. Weller, A. Gossauer, Synthesen von Gallenfarbstoffen, X. Synthese und Photoisomerisierung des racem. Phytochromobilin‐dimethylesters, Chem. Ber. 113 (1980) 1603–1611. https://doi.org/10.1002/cber.19801130439 |
| [Wu, 2003] |
C. Wu, H. Akimoto, Y. Ohmiya, Tracer studies on dinoflagellate luciferin with [15N]-glycine and [15N]-L-glutamic acid in the dinoflagellate Pyrocystis lunula, Tetrahedron Lett. 44 (2003) 1263–1266. https://doi.org/10.1016/S0040-4039(02)02815-0 |
| [Yamada, 2022] |
K. Yamada, T. Yatabe, K.-S. Yoon, S. Ogo, Cp*Ir complex with mesobiliverdin ligand isolated from Thermoleptolyngbya sp. O-77, J. Organomet. Chem. 964 (2022) 122302. https://doi.org/10.1016/j.jorganchem.2022.122302 |
| [Yamauchi, 2005] |
T. Yamauchi, T. Mizutani, K. Wada, S. Horii, H. Furukawa, S. Masaoka, H.-C. Chang, S. Kitagawa, A facile and versatile preparation of bilindiones and biladienones from tetraarylporphyrins, Chem. Commun. (2005) 1311. https://doi.org/10.1039/b414299c |
| [Yang, 1991] |
B. Yang, M.D. Morris, M. Xie, D.A. Lightner, Resonance Raman spectroscopy of bilirubins: Band assignments and application to bilirubin/lipid complexation, Biochemistry 30 (1991) 688–694. https://doi.org/10.1021/bi00217a015 |
| [Zhang, 2017] |
S. Zhang, J.S. Lindsey, Construction of the bacteriochlorin macrocycle with concomitant Nazarov cyclization to form the annulated isocyclic ring: Analogues of bacteriochlorophyll a, J. Org. Chem. 82 (2017) 2489–2504. https://doi.org/10.1021/acs.joc.6b02878 |